SM3 3.1: Rational Operations

For problems 1-6, simplify each rational expression. State any restrictions on *x*.

1) $\frac{35x}{7x}$ 2) $\frac{3x+12}{2x+8}$ 3) $\frac{x^2+7x}{x}$

4)
$$\frac{18x^4 - 6x^2 + 9x}{3x}$$
 5) $\frac{8 + 2x}{2x^2 + 10x + 8}$ 6) $\frac{2x^3 + 13x^2 - 7x}{x^2 + 7x}$

- 7) Show that $\frac{x^3-6x^2-7x}{x^2+4x+3}$ is equivalent to $\frac{x^2-7x}{x+3}$ for most values of x. State which values of x cause the expressions be not equivalent.
- 8) What is the simplest rational expression that represents the depth of a pond that is $\frac{3x^2-8x}{5x}$ meters deep?
- 9) What is the simplest rational expression that represent the diameter of a circle that has a radius of $\frac{4x-8}{3x-6}$ centimeters?
- 10) What are the simplest rational expressions that can be used to represent the length and width, in inches, of a rectangle with sides that are $\frac{x^2-x-6}{x+2}$, $\frac{x^2+x-20}{2x+10}$, $\frac{6x^2-96}{48+12x}$, and $\frac{2x-6}{2}$ inches ?

For problems 21-25, simplify the expression and state any restrictions on x.

11)
$$\frac{3}{x} \cdot \frac{5x}{6x^2 + 9}$$
 12) $\frac{x}{x - 3} \cdot \frac{2x + 7}{x + 1}$ 13) $\frac{x^2 + 3x}{x - 4} \cdot \frac{x^2 + 1}{x^2}$

14)
$$\frac{x}{12} \cdot \frac{8+4x}{5x}$$
 15) $\frac{2x+6}{x-6} \cdot \frac{x^2-4x-12}{30+4x-2x^2}$

16) For what values of x is
$$\frac{2x-8}{x^2+7x+10}$$
 an invalid expression?

17) Show that the rational expression $\frac{5x+5}{x} \cdot \frac{x^3+3x^2}{x^2-1} \cdot \frac{x-1}{5x}$ is equivalent to the rational expression x + 3. State any restrictions on x.

18) What simplified rational expression represents the area of a rectangle with a width of $\frac{x}{2}$ inches and a length of $\frac{2x+1}{x-5}$ inches? State any restrictions on x.

For problems 31-34, simplify the expression and state any restrictions on x.

19)
$$\frac{2x}{7} \div \frac{1}{x}$$
 20) $\frac{3}{5x} \div \frac{5}{x}$

21)
$$\frac{8x+3}{5} \div \frac{x}{9}$$
 22) $\frac{2x-4}{x+1} \div \frac{x}{x+2}$

23) Show that the expression
$$\frac{x^2 - 2x - 15}{2x^2 - 8x} \cdot \frac{32 - 2x^2}{x^2 - 13x + 40} \div \frac{x + 4}{8x - x^2}$$
 is equivalent to the expression $x + 3$. State any restrictions on x .